Science

Open Channel Metal Particle Supergels | Nature

Open Channel Metal Particle Supergels | Nature

  • Kong, L., Zhong, M., Shuang, W., Xu, Y. and Bu, X.-H. Electrochemically active sites within crystalline porous materials for energy storage and conversion. Chem. I am. rev. 492378–2407 (2020).

    CASE
    PubMed

    Google Scholar

  • Slater, AG & Cooper, AI Function-directed design of novel porous materials. science 348aaa8075 (2015).

    PubMed

    Google Scholar

  • Wang, J. et al. New insights into the structure-performance relationships of mesoporous materials in analytical science. Chem. I am. rev. 478766–8803 (2018).

    CASE
    PubMed

    Google Scholar

  • Geng, K. et al. Covalent organic frameworks: design, synthesis and functions. Chem. rev. 1208814–8933 (2020).

    CASE
    PubMed

    Google Scholar

  • Lee, J.-SM and Cooper, AI Advances in conjugated microporous polymers. Chem. rev. 1202171–2214 (2020).

    CASE
    PubMed
    PubMed Central

    Google Scholar

  • Finnefrock, AC, Ulrich, R., Toombes, GES, Gruner, SM, and Wiesner, U. The plumber’s nightmare: a new morphology in block copolymer-ceramic nanocomposites and mesoporous aluminosilicates. Jam. Chem. I am. 12513084–13093 (2003).

    CASE
    PubMed

    Google Scholar

  • Meza, LR, Das, S. & Greer, JR Strong, lightweight, and recoverable three-dimensional ceramic nanomaterials. science 3451322–1326 (2014).

    ADS
    CASE
    PubMed

    Google Scholar

  • Zhou, J. and Wang, B. Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chem. I am. rev. 466927–6945 (2017).

    CASE
    PubMed

    Google Scholar

  • Sol, M.-H. et al. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation and detection to biomedicine. Chem. I am. rev. 453479–3563 (2016).

    CASE
    PubMed

    Google Scholar

  • Vyatskikh, A. et al. Additive manufacturing of 3D nanoarchitectured metals. born common 9593 (2018).

    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Hirt, L., Reiser, A., Spolenak, R. and Zambelli, T. Additive manufacturing of metal structures at the micrometer scale. Adv. Mater. 291604211 (2017).

    Google Scholar

  • Ullal, CK et al. Photonic crystals via holographic lithography: simple cubic, diamond-like and gyroid structures. Appl. Phys. Lett. 845434–5436 (2004).

    ADS
    CASE

    Google Scholar

  • Park, H. & Lee, S. Double gyroids for frequency-isolated Weyl dots in the visible regime and interference lithographic design. Photonics ACS 71577–1585 (2020).

    CASE

    Google Scholar

  • Phan, A. et al. Synthesis, structure and carbon dioxide capture properties of zeolitic imidazolate frameworks. acc. Chem. Nothing. 4358–67 (2010).

    CASE
    PubMed

    Google Scholar

  • Furukawa, H., Córdova, KE, O’Keeffe, M. and Yaghi, OM The chemistry and applications of metal-organic frameworks. science 3411230444 (2013).

    PubMed

    Google Scholar

  • Armstrong, E. & O’Dwyer, C. Artificial opal photonic crystals and inverse opal structures: fundamentals and applications from optics to energy storage. J. Mater. Chem. c 36109–6143 (2015).

    CASE

    Google Scholar

  • Hoeven, JES, van der, Shneidman, AV, Nicolas, NJ and Aizenberg, J. Evaporation-induced self-assembly of metal oxide inverse opals: from synthesis to applications. acc. Chem. Nothing. 551809–1820 (2022).

    PubMed
    PubMed Central

    Google Scholar

  • Friedrichs, OD, Dress, AWM, Huson, DH, Klinowski, J. & Mackay, AL Systematic enumeration of crystal lattices. Nature 400644–647 (1999).

    ADS
    CASE

    Google Scholar

  • Yaghi, OM et al. Reticular synthesis and design of new materials. Nature 423705–714 (2003).

    ADS
    CASE
    PubMed

    Google Scholar

  • Hoffmann, F. Introduction to crystallography (Springer Nature, 2020).

  • Mirkin, CA, Letsinger, RL, Mucic, RC & Storhoff, JJ A DNA-based method for the rational assembly of nanoparticles into macroscopic materials. Nature 382607–609 (1996).

    ADS
    CASE
    PubMed

    Google Scholar

  • Samanta, D., Zhou, W., Ebrahimi, SB, Petrosko, SH, and Mirkin, CA Programmable matter: the nanoparticle atom and DNA binding. Adv. Mater. 34e2107875 (2022).

    PubMed

    Google Scholar

  • Macfarlane, RJ et al. Engineering nanoparticle superimages with DNA. science 334204–208 (2011).

    ADS
    CASE
    PubMed

    Google Scholar

  • O’Brien, MN, Lin, HX, Girard, M., Olvera De La Cruz, M. & Mirkin, CA Programming colloidal crystal habits with anisotropic nanoparticle building blocks and DNA linkages. Jam. Chem. I am. 13814562–14565 (2016).

    PubMed

    Google Scholar

  • Tian, ​​Y. et al. Lattice engineering using nanoparticle-DNA frameworks. night Mater. 15654–661 (2016).

    ADS
    CASE
    PubMed
    PubMed Central

    Google Scholar

  • Zhang, T. et al. 3D DNA Origami Crystals. Adv. Mater. 301800273 (2018).

    Google Scholar

  • Ham, S., Jang, H.-J., Song, Y., Shuford, KL & Park, S. Octahedral and cubic gold nanoframes with a platinum framework. Angew. Chem. International English Ed. 549025–9028 (2015).

    CASE

    Google Scholar

  • Yang, T.-H. et al. Noble metal nanoframes and their catalytic applications. Chem. rev. 121796–833 (2021).

    CASE
    PubMed

    Google Scholar

  • Wang, Y. et al. Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth. ACS Nano 74586–4594 (2013).

    CASE
    PubMed

    Google Scholar

  • Auyeung, E. et al. DNA-mediated crystallization of nanoparticles in Wulff polyhedra. Nature 50573–77 (2014).

    ADS
    PubMed

    Google Scholar

  • Auyeung, E., Macfarlane, RJ, Choi, CHJ, Cutler, JI, and Mirkin, CA Solution-to-solid-state transition of DNA-engineered nanoparticle supergels. Adv. Mater. 245181–5186 (2012).

    CASE
    PubMed

    Google Scholar

  • Oh, T. et al. Stabilization of colloidal crystals designed with DNA. Adv. Mater. 311805480 (2019).

    Google Scholar

  • Jones, MR et al. DNA-nanoparticle supergels formed from anisotropic building blocks. night Mater. 9913–917 (2010).

    ADS
    CASE
    PubMed

    Google Scholar

  • Senesi, AJ et al. Oligonucleotide flexibility dictates crystal quality in DNA-programmable nanoparticle supergels. Adv. Mater. 267235–7240 (2014).

    CASE
    PubMed

    Google Scholar

  • Gong, J. et al. Shape-dependent ordering of gold nanocrystals in large-scale supergels. born common 814038 (2017).

    ADS
    CASE
    PubMed
    PubMed Central

    Google Scholar

  • Tian, ​​Y. et al. Three-dimensional nanomaterials ordered by DNA-prescribed, valence-controlled material voxels. night Mater. 19789–796 (2020).

    ADS
    CASE
    PubMed

    Google Scholar

  • Smith, DR, Pendry, JB and Wiltshire, MCK Metamaterials and negative refractive index. science 305788–792 (2004).

    ADS
    CASE
    PubMed

    Google Scholar

  • Shelby, RA, Smith, DR, and Schultz, S. Experimental verification of a negative refractive index. science 29277–79 (2001).

    ADS
    CASE
    PubMed

    Google Scholar

  • Sun, L. et al. Position- and orientation-controlled growth of DNA-engineered Wulff-shaped colloidal crystals. Adv. Mater. 322005316 (2020).

    CASE

    Google Scholar

  • Millstone, JE, Wei, W., Jones, MR, Yoo, H., and Mirkin, CA Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Lett. 82526–2529 (2008).

    ADS
    CASE
    PubMed
    PubMed Central

    Google Scholar

  • Young, KL et al. Assembly of reconfigurable one-dimensional colloidal supergels due to a synergy of nanoscale fundamental forces. Proc. Natl Acad. Saber USA 1092240–2245 (2012).

    ADS
    CASE
    PubMed
    PubMed Central

    Google Scholar

  • O’Brien, MN, Jones, MR, Brown, KA and Mirkin, CA Universal seeds of noble metal nanoparticles made by iterative reductive growth and oxidative dissolution reactions. Jam. Chem. I am. 1367603–7606 (2014).

    PubMed

    Google Scholar

  • Li, Y. et al. Controlled growth by corners, edges and facets of nanocrystals. science Adv. 7eabf1410 (2021).

    ADS
    CASE
    PubMed
    PubMed Central

    Google Scholar

  • Kremer, JR, Mastronarde, DN and McIntosh, JR Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 11671–76 (1996).

    CASE
    PubMed

    Google Scholar

  • Yan, R., Venkatakrishnan, SV, Liu, J., Bouman, CA, and Jiang, W. MBIR: a 3D cryo-ET reconstruction method that effectively minimizes missing wedge artifacts and restores missing information. J. Struct. Biol. 206183–192 (2019).

    PubMed
    PubMed Central

    Google Scholar

  • Johnson, PB & Christy, RW Optical constants of noble metals. Phys. rev. B 64370–4379 (1972).

    ADS
    CASE

    Google Scholar

  • Werner, WSM, Glantschnig, K. & Ambrosch-Draxl, C. Optical constants and inelastic electron scattering data for 17 elemental metals. J. Phys. Chem. Ref. data 381013–1092 (2009).

    ADS
    CASE

    Google Scholar



  • #Open #Channel #Metal #Particle #Supergels #Nature

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button